In GAMER ELBDM GaussianWavePacket

$\begin{aligned} \psi&=C_2e^{i(\theta_1+\theta_2)}\\& =\frac{1}{\{\pi w_0^2[1+(\frac{t}{\frac{m}{\hbar}w_0^2})^2]\}^{1/4}}\exp\Big[{-\frac{1}{2}\frac{(x-v_0t-x_0)^2}{w_0^2[1+(\frac{t}{\frac{m}{\hbar}w_0^2})^2]}}\Big]\exp\Big[i\Big(-\frac{1}{2}\mathrm{cos^{-1}}\big( \frac{1}{\sqrt{1+(\frac{t}{\frac{m}{\hbar}w_0^2})^2}}\big)+\frac{1}{2}(x-v_0t-x_0)^2\frac{(\frac{t}{\frac{m}{\hbar}w_0^2})}{w_0^2[1+(\frac{t}{\frac{m}{\hbar}w_0^2})^2]}+v_0\frac{m}{\hbar}(x-\frac{1}{2}v_0t-x_0)\Big)\Big] \\& =\frac{1}{\{2\pi\sigma_{x,0}^2[1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2]\}^{1/4}}\exp\Big[{-\frac{1}{2}\frac{(x-v_0t-x_0)^2}{2\sigma_{x,0}^2[1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2]}}\Big]\exp\Big[i\Big(-\frac{1}{2}\mathrm{cos^{-1}}\big( \frac{1}{\sqrt{1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2}}\big)+\frac{1}{2}(x-v_0t-x_0)^2\frac{(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})}{2\sigma_{x,0}^2[1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2]}+v_0\frac{m}{\hbar}(x-\frac{1}{2}v_0t-x_0)\Big)\Big] \end{aligned}$

$\rho(x,t)=|\psi(x,t)|^2=\frac{1}{\{2\pi\sigma_{x,0}^2[1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2]\}^{1/2}}\exp\Big[{-\frac{(x-v_0t-x_0)^2}{2\sigma_{x,0}^2[1+(\frac{t}{2\frac{m}{\hbar}\sigma_{x,0}^2})^2]}}\Big]=\frac{1}{\sigma_{x,t}\sqrt{2\pi}}\exp\Big[{-\frac{(x-v_0t-x_0)^2}{2\sigma_{x,t}^2}}\Big]$

$\int_{-\infty}^{\infty} \rho(x,t) dx = 1$


$\psi(x,t)=\sqrt{\frac{\alpha}{\alpha+i\frac{\hbar}{m}t}}\exp\Big[-\frac{(x+x_0-ik\alpha)^2}{2(\alpha+i\frac{\hbar}{m}t)}\Big]\exp\Big[-\frac{\alpha k^2}{2}\Big]$